Mathematics Methods

Unit 3 & 4

Integration

1.	Indefinite	integration	rules
Τ.	macmine	micgiation	IUIC

(a) Increase the power by one and divide by the new power

$$\int ax^n dx = \frac{ax^{n+1}}{n+1} + c$$

Example:

Integrate f'(x) = 2x.

(b) Others

By substitution	By formula
$\int (ax+b)^n dx$	$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c, n \neq 1$

Example:

$$\int (5-3x)^2 dx$$

Trigonometric functions

$$\int \cos x \, dx = \sin x + c$$

$$\int \cos ax \, dx = \frac{1}{a} \sin x + c$$

$$\int \sin x \, dx = -\cos x + c$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos x + c$$

		$\int sec^2x \ dx = \tan x +$	· <i>C</i>	
Example	e 1: e 15 <i>cos</i> 5 <i>x</i> .		_	
teg.ut	2 10 000 00.			
Example	2:			
	$e \sin 5x + 6x$			
Example				
Integrat	e $\cos 5x \cos 5x - \sin$	$5x \sin 5x$.		
<u>Expone</u>	ntial functions	$\int e^x \ dx = e^x + c$		
		$\int e^{-\alpha x} = e^{-\alpha x}$		
Example Integrat	: 1: e e ^{2x} .			

Example 2: Integrate $5e^{3x} + 3x$.

Example 3: Integrate $6e^{3x+1}$.

Logarithmic functions

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int \frac{1}{ax+b} dx = \ln(ax+b) + c$$

Example 1: Integrate $\frac{7}{x}$.

Example 2: Integrate $\frac{1}{6x}$.

Example 3: Integrate $\frac{1}{4x+5}$.

Example 4:
Integrate $\frac{4x}{4x^2+5}$.
$4x^2+5$
Example 5:
1
Integrate $x + \frac{1}{x}$.
·
Example 6:
Integrate $tan 2\theta$.
megrate tun 20.
Example 7:
cos x 1
Integrate $\frac{\cos x}{\sin x} + \frac{1}{x}$.
sin x x

2. Integration involving partial fraction

Cases for setting up a partial fraction

Case	Rational function	Partial fraction
Distinct linear	$\frac{px+q}{(x-a)(x-b)}, a \neq b$	$A \qquad B$
factors	$(x-a)(x-b)$, $a \neq b$	$\overline{(x-a)}^+\overline{(x-b)}$
Distinct cubic	$px^2 + qx + r$	A B C
linear factors	$\frac{px^2 + qx + r}{(x - a)(x - b)(x - c)}, a \neq b \neq c$	$\frac{A}{(x-a)} + \frac{B}{(x-b)} + \frac{C}{(x-c)}$
Repeated linear	px + q	A , B
factors	$\overline{(x-a)^2}$	$\frac{1}{(x-a)} + \frac{1}{(x-a)^2}$
	px + q	A . B . C
	$\frac{1}{(x-a)^3}$	$\frac{1}{(x-a)} + \frac{2}{(x-a)^2} + \frac{2}{(x-a)^3}$
Repeated linear	$px^2 + qx + r$	A B C
and distinct	$\frac{(x-a)^2(x-b)}{(x-a)^2(x-b)}$	$\frac{A}{(x-a)} + \frac{B}{(x-a)^2} + \frac{C}{(x-b)}$
linear factors		

Example 1:

Find the values of A, B and C given that $\frac{x^2+11}{(x+2)^2(x-3)} = \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{x-3}$. Hence, evaluate $\int_1^2 \frac{x^2+11}{(x+2)^2(x-3)} \, dx.$

Example 2:

Find the values of A and B given that $\frac{3-x}{5+3x-2x^2} = \frac{A}{5-2x} + \frac{B}{1+x}$. Hence evaluate $\int_0^2 \frac{3-x}{5+3x-2x^2} \ dx$.

3. The arbitrary constant, "c" in indefinite integration

(a) Origin

Origin of arbitrary constant (by example):

By differentiating y=mx+c, we can get $\frac{dy}{dx}=m$. The value of c disappears as it does not have an unknown, x.

$$y = 3x + 1$$

$$y = 3x + 2$$

$$y = 3x + 3$$
....

For all the equations above,

$$\frac{dy}{dx} = 3$$

If we integrate $\frac{dy}{dx} = 3$,

$$\int 3 dx = 3x$$

From here, we can see that the equation is y=3x. However, there should be a constant as $y=3x+1 \neq y=3x+2 \neq y=3x+3$

Therefore, the integration of these equations should give y=3x+c where c is a constant, c=1,2,3 for this case.

(b) How different ways of integration affects arbitrary constant

Example 1:

Method 1

$$\int \cos^3 x \sin x \, dx = \int \cos x \cos^2 x \sin x \, dx$$

$$= \int (1 - \sin^2 x) \cos x \sin x \, dx$$

Let
$$u = \sin x$$
,

$$\frac{du}{dx} = \cos x$$

$$\int (1 - u^2) u \cos x \frac{du}{\cos x}$$

$$= \int u - u^3 du$$

$$= \frac{u^2}{2} - \frac{u^4}{4} + c$$

$$= \frac{\sin^2 x}{2} - \frac{\sin^4 x}{4} + c$$

$$= \frac{1 - \cos^2 x}{2} - \frac{(1 - \cos^2 x)^2}{4} + c$$

$$= \frac{1 - \cos^2 x}{2} - \frac{1 - 2\cos^2 x + \cos^4 x}{4} + c$$

$$= \frac{1}{2} - \frac{\cos^2 x}{2} - \frac{1}{4} + \frac{\cos^2 x}{4} - \frac{\cos^4 x}{4} + c$$

$$= -\frac{\cos^4 x}{4} + \frac{1}{4} + c$$

Method 2

$$\int \cos^3 x \sin x \, dx$$

Let
$$u = \cos x$$
,

$$\frac{du}{dx} = -\sin x$$

$$\int u^3 \sin x - \frac{du}{\sin x}$$

$$= \int -\frac{u^4}{4} du$$

$$= -\frac{\cos^4 x}{4} + C$$

Both answers are correct. By comparing both answers,

$$C = \frac{1}{4} + c$$

Or also

$$c = C - \frac{1}{4}$$

Example 2:

$$\int x + 1 \, dx = \frac{x^2}{2} + x + c$$

Method 2

$$\int x + 1 \, dx$$
Let $y = x + 1$

$$\int u \, du$$
= $\frac{u^2}{2} + C$
= $\frac{(x+1)^2}{2} + C$
= $\frac{x^2}{2} + x + \frac{1}{2} + C$

Both answers are correct. By comparing both answers,

$$c = \frac{1}{2} + C$$

$$c = \frac{1}{2} + C$$
Or also
$$C = c - \frac{1}{2}$$

Example 3:

$$\frac{\text{Method 1}}{\int \frac{7}{5x} dx} = \frac{7}{5} \int \frac{1}{x} dx$$
$$= \frac{7}{5} \ln x + c$$

Method 2

Method 2
$$\int \frac{7}{5x} dx = \frac{7}{5} \int \frac{5}{5x} dx$$

$$= \frac{7}{5} \ln 5x + C$$

$$= \frac{7}{5} \ln 5 + \frac{7}{5} \ln x + C$$

$$= \frac{7}{5} \ln x + \frac{7}{5} \ln 5 + C$$

Both answers are correct. By comparing both answers, $c=\frac{7}{5}\ln 5 + C$ Or also $C=c-\frac{7}{5}\ln 5$

$$c = \frac{7}{5} \ln 5 + C$$

$$C = c - \frac{7}{5} \ln 5$$

$= 5x^2 + 2x$ at (3,5).
$=5x^2+2x$ at (3,5).
- 2x 2 The gradient
=2x+3. The gradient passes through $(4,7)$?
passes tillough (4,7)!

5. Area under the curve

(a) Trapezium rule

Additional info.

Given a curve with function f(x)

To find each area of strips (trapezium):

$$Area = \frac{1}{2}(y_0 + y_1) w$$

Total area under the curve by calculating the total area of rectangular strips,

Area =
$$w \left[\frac{1}{2} (y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}) \right]$$

Example:

Diagram below shows a function $f(x) = 5^{2x}$.

Estimate the shaded area using trapezium rule.

(b) Rectangle method/ midpoint rule

Given a curve with function f(x)

Area circumscribed

To find each area of strips (rectangles):

$$A = f(x)/h \times w$$

Estimating the area of curve,

$$Area \approx \frac{A_{circumscribed} + A_{inscribed}}{2}$$

Example:

Diagrams below shows graphs of $f(x) = 2e^{-2x}$ inscribed and circumscribed.

Estimate the area of the region trapped between the curve and x —axis from x = 0 to x = 1.

(c) Integration (definite integral)

Given a curve with function f(x)

$$Area = \int_{a}^{b} f(x) \ dx$$

Tips for finding area bounded by two functions: Use the function above minus the function below.

_		
Evam	പപ	
Exam	טופ	
	ρ.υ	•

Find the area trapped between $f(x) = \sin x$ and $f(x) = \cos x$ for the range $0 \le x \le \pi$.

6. **Fundamental theorem of calculus**

(a) Evaluation theorem: Part 2

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Example:

Use the fundamental theorem of calculus to evaluate $\int_0^1 x^2 + e^x \ dx$. Give your answer in terms of e.

(b) Relationship between differentiation and integration: Part 1

Finding derivative using fundamental theorem of calculus

$$\frac{d}{dx} \left[\int_{a}^{x} f(t) \right] dt = f(x)$$

Example 1:

Determine $\frac{d}{dx} \left[\int_1^x t^2 + 2 \right] dt$.

Using fundamental theorem & chain rule to calculate derivatives

$$\frac{d}{dx} \left[\int_{a}^{g(x)} f(t) \right] dt = f[g(x)] \times g'(x)$$

Example 1: Find
$$\frac{d}{dx} \left[\int_{1}^{x+1} t \right] dt$$
.

Example 2: Find
$$\frac{d}{dx} \left[\int_{\pi}^{e^x} t^2 + t \right] dt$$
.

Using fundamental theorem of calculus with two variable limits of integration

Steps:

- . 1. Break the integrals in accordance to $\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$. 2. Apply $\frac{d}{dx} \left[\int_a^{g(x)} f(t) \right] dt = f[g(x)] \times g'(x)$ and/ or $\frac{d}{dx} \left[\int_a^x f(t) \right] dt = f(x)$ whenever

Example 1:

Find
$$f'(x)$$
 of $f(x) = \int_t^{3t} x^3 dx$.

Example 2: Find
$$\frac{d}{dx} \left[\int_{x+2}^{\ln 2x} y^2 \ dy \right]$$
.

Theorem (iii)

$$\int_{b}^{a} \frac{d}{dt} [f(t)] dt = f(a) - f(b)$$

Example 1: Find
$$\int_2^x \frac{d}{dt} (t^3 + 1) dt$$
.

Example 2:

Find
$$\int_{\pi}^{x^2} \frac{d}{dt} (2t^2 + t) dt$$
.

Additivity and linearity of definite integrals

Summary:

$$\int_{a}^{a} f(x)dx = 0$$

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

$$\int_{a}^{b} k \times f(x)dx = k \int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$$\int_{a}^{a} f(x)dx = 0$$

Given that $\int_1^7 f(x) dx = 3$, evaluate $\int_7^7 2f(x) dx$.

Using substitution method

Example:

Given that f(x) is continuous everywhere and that $\int_7^{15} f(x) \, dx = 7$, evaluate $\int_2^{10} f(x+5) \, dx$.

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Given that $\int_{1}^{100} f(x) dx = e^{12}$, evaluate $\int_{100}^{1} f(x) dx$

Example 2:

Given that $\int_{-10}^{-2} f(x) dx = 5$, evaluate $\int_{10}^{2} f(-x) dx$.

$$\int_{a}^{b} k \times f(x) dx = k \int_{a}^{b} f(x) dx$$

Example 1:

Given that $\int_1^7 f(x) dx = 3$, evaluate $\int_1^7 7f(x) dx$.

Example 2:

Given that $\int_3^7 f(x) dx = 12$, evaluate $\int_3^7 \frac{f(x)}{4} dx$.

Given that $\int_5^{12} f(x) dx = 7$, evaluate $\int_1^7 2f(x+3) dx$.

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

Given that $\int_{12}^{6} f(x)dx = 100$, evaluate $\int_{12}^{18} f(x) dx - \int_{6}^{18} [f(x) + 10] dx$.

Example 2: Given that $\int_1^7 f(x) dx = 13$ and $\int_7^6 f(x) dx = 24$, evaluate $\int_1^7 f(x) dx + \int_6^7 f(x) dx$.

$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
$$\int_{a}^{b} [f(x) \pm c] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} c dx$$

Example 1:

Given that $\int_{9}^{87} f(x) dx = -43$, evaluate $\int_{9}^{87} [f(x) + 10] dx$.

Example 2:

Given that $\int_{1}^{9} f(x) dx = 3.5$, evaluate $\int_{1}^{9} [f(x) - 10x] dx$.

END